Ask Specialist

氧化钇的性质及用途

 
氧化钇(Y2O3)是一种不溶于水和碱、溶于酸的外观为白色或者白色略带微黄色粉末稀土氧化物,典型的C型稀土倍半氧化物,是体心立方结构。露置空气中易吸收二氧化碳和水,所以要密闭保存,以防变质。
 
Y2O3的晶体学参数表
 
Y2O3的晶体结构图
 
氧化钇的性质
(1)摩尔质量是225.82g/mol,密度5.01g/cm3
(2)熔点2410℃,沸点 4300℃,热稳定性好;
(3)物理和化学稳定性好,具有较好的耐腐蚀性;
(4)热导率高,在300K时热导率可达27W/(m⋅K),大约是钇铝石榴(Y3Al5O12)晶体热导率的2倍,高热导率对其作为激光器工作介质非常有利,高的热导率对其作为固体激光介质材料极为重要。
(5)光学透明范围宽(0.29~8μm),在可见光区理论透光率可达80%以上,在1050nm处,其折射率高达1.89,使其具有80%以上的理论透过率;
(6)声子能量低,其最大声子截止频率大约为550cm–1,低的声子能量可以抑制无辐射跃迁的几率,提高辐射跃迁的几率,从而提高发光量子效率;
(7)在2200℃以下,Y2O3为立方相,不存在双折射。在波长1050nm折射率为1.89。在2200℃以上转变为六方相;
(8)Y2O3能隙非常宽,高达5.5eV,掺杂的三价稀土发光离子的能级处于Y2O3的价带和导带之间,在费米能级之上,从而形成分立发光中心;
(9)Y2O3作为基质材料,可以容纳高浓度的三价稀土离子掺杂进入,并取代Y3+离子,而不引起其结构的变化。
氧化钇的用途
1、钇稳定氧化锆粉合成
由于纯ZrO2从高温冷却到室温的过程中将发生如下相变:立方相(c)→四方相(t)→单斜相(m),其中在1150℃会发生t→m相变,并伴随着约5%的体积膨胀。但如果将ZrO2的t→m相变点稳定到室温,使其在承载时由应力诱发产生t→m相变,由于相变产生的体积效应而吸收大量的断裂能,从而使材料表现出异常高的断裂能,从而使材料表现出异常高的断裂韧度,产生相变增韧,获得高韧性、高耐磨性。

 

要实现氧化锆的相变增韧,必须添加一定的稳定剂并在一定的烧成条下,将高温稳定相-四方亚稳定至室温,获得室温下可相变的四方相,这就是稳定剂对氧化锆的稳定作用。Y2O3是发展至今得到最多研究的氧化锆稳定剂,烧结出来的Y-TZP材料具有优良的常温力学性能,强度较高,具有良好的断裂韧性,并且其集体中材料的晶粒尺寸细小而均匀,因此获得较多关注。
2、助烧结剂
许多特种陶瓷的烧结都需要助烧结剂的参与,助烧结剂的作用一般可分为以下几个部分:与烧结物形成固溶体;阻止晶型转变;抑制晶粒长大;产生液相。比如说氧化铝的烧结,往往会加入氧化镁MgO作为烧结过程中的显微结构稳定剂,它可以细化晶粒,大大减小晶界能的差异,削弱晶粒生长的各向异性,抑制不连续的晶粒生长。由于MgO高温挥发性较强,为了达到良好的效果,常将氧化钇同MgO混合引入,Y2O3可以起到细化晶粒,促进烧结致密化的作用。
3、YAG粉体合成
钇铝石榴石(Y3Al5O12)是人造化合物,没有天然矿物,无色,莫氏硬度可达到8.5,熔点为1950℃,不溶于硫酸、盐酸、硝酸氢氟酸等。高温固相法是制备YAG粉体的传统方法,按照氧化钇和氧化铝的二元相图中得到的比例混合两种粉体在高温下焙烧,通过氧化物之间的固相反应形成YAG粉体。在高温条件下,氧化铝和氧化钇的反应中,会先生成中间相YAM和YAP,最终形成YAG。
4、透明陶瓷
氧化钇一直是透明陶瓷领域中的研究重点,它属立方晶系,具有光学性能的各轴同向性,与透光氧化铝的异方性相比影像较不失真,因此逐渐被高阶的镜头或是军事光学窗所重视与发展。
纳米氧化钇用途
(一)陶瓷原料:
氧化钇粉体是一种优良的陶瓷原料,即使在远红外区仍有约80%的直线透过率,可用于红外导弹的窗口和整流罩、天线罩、微波基板、绝缘支架、光纤掺杂、红外发生器管壳、红外透镜及其他高温窗等。
 
(二)荧光粉材料:
纳米氧化钇粉体是荧光粉中应用较多的稀土氧化物之一。添加Eu3+,Nd3+等稀土元素的Y2O3高透明陶瓷可作为荧光材料,以Eu3+为激活剂,钇化合物为基质材料的红色荧光粉,包括Eu3+激活的钒酸钇、氧化钇和硫氧化钇的红色荧光粉,被应用于彩色电视显像管中,解决了彩电三基色中红色不纯正的难题,同时它还能显著提高彩电的图像质量,荧光灯的发光效率、延长其使用寿命等。
 
(三)燃料电池、氧传感器:
用氧化钇稳定的氧化锆(YSZ)陶瓷是一种重要的固体电解质材料,具有良好的固体氧离子导电特性,是制作固体氧化物燃料电池、氧传感器及高温湿度传感器等多种功能元器件的核心原材料。
 
(四)激光器物质:
氧化钇粉体具有较高的熔点、耐腐蚀性、高的热导性和低声子能量,是潜在的固体激光器基质材料,它的热导率是钇铝石榴石Y3Al5O12(YAG)的2倍,因此Y2O3粉体是一种理想的激光介质材料。掺Nd:Y2O3具有良好的光学均匀性,具有高的机械强度,高的导热系数及良好的激光性能等优点,是目前固体激光材料中用量最大的激光晶体;Yb:Y2O3透明多晶陶瓷不仅具有与Yb:YAG单晶同样优秀的物理化学性能和光谱特性,而且其热导率和发射带宽约为Yb:YAG单晶的两倍,掺杂Yb元素的Y2O3基透明陶瓷材料实用性更高,非常适合于高亮度激光器和超短脉冲激光器领域的发展应用,是一种理想的激光材料。
 
(五)超导材料:
由于氧化物超导材料如YBCO具有强烈的各向异性,要制备具有高临界电流密度的超导体,必须使超导层材料具有双轴织构。如果超导层直接沉积在金属基体上会表现出很差的超导特性,因为高温下许多超导材料与大多数金属基体之间会互相反应。为了控制超导层的排列,可以将没有织构的金属基体制备成有织构的金属基体,并在其上沉积上基体排列良好的缓冲层,一般情况下用Y2O3作为金属基底和超导薄膜的缓冲层。纪红等在金属基体和超导层之间加人Y2O3缓冲层,在具有双轴织构的金属基底上外延生长出织构峰锐、组分单一的超导膜。此外,氧化钇粉体还可用于制备结构为YBCO/Y2O3/YBCO的高温超导SIS型约瑟夫森隧道结,约瑟夫森结是超导电子学的关键元件,是超导量子干涉仪(SQUID)和其它许多超导器件的基础。
 
(六)先进结构陶瓷:
氧化钇颗粒的超细化,能显著提高产品的性能,其弥散在合金中可得到超耐热合金;用超细氧化钇稳定的氧化锆粉末可烧结成高强度、高韧性的稳定氧化锆陶瓷;在高温下形成稳定化合物或半稳定化合物的晶体结构,形成具有优良的抗热震、绝热、抗高温燃气冲刷等综合热力学特性的隔热涂层系统;在高温结构陶瓷氮化硅中加人氧化钇可作为致密助剂,可以大大增强陶瓷材料的强度和韧性,用于燃汽涡轮发动机、耐磨零部件、切削金属刀头、刀具等方面。Al2O3-30%TiCN复合材料添加Y2O3以后形成了YAG.对它的抗热震性有了很大改善,添加到陶瓷或玻璃基陶瓷,可作为结晶化的基体,能够改善其烧结温度,结晶性和力学性能。
 
声      明:文章内容来源于无机非金属材料科学仅作分享,不代表本号立场,如有侵权,请联系小编删除,谢谢!
 

 

2023年11月24日 11:55
浏览量:0
收藏